An Analysis of Excess Stock Returns and Fat Tail Distributions for Flyer Fund Stocks in the Volatile Market Period of 2007 - 2011

George S. Cressy
University of Dayton, stander@udayton.edu

Conor Flynn
University of Dayton, stander@udayton.edu

Corey R. Pryor
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Recommended Citation
http://ecommons.udayton.edu/stander_posters/136

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.

Name: Corey Pryor, Conor Flynn, George Cressy
Faculty Advisors: Dr. John Rapp & Dr. Bob Dean

1) Study Purpose
To determine if excess return distributions as measured by excess kurtosis are useful predictors of future stock returns

2) Data Requirements
Monthly returns for 20 stocks, 2007-2011

3) Excess Return Model Specification
\[ER_i = (R_{it} - R_{mt}) \]
\[\overline{ER_i} = \frac{\sum_{t=1}^{n} (R_{it} - R_{mt})}{n} \]
Where:
\(ER_i \) = Average Excess returns for stock
\(R_{it} \) = Return to stock at time \(t \)
\(R_{mt} \) = Return to market at time \(t \)
\(ER_i \) = Excess return for stock

4) Excess Kurtosis Model Specification
\[EK_i = \frac{\sum_{t=1}^{n} (ER_{it} - \overline{ER_i})^4}{n - 1(\sigma_{ER_i})^4} - 3 \]
Where:
\(EK_i \) = Excess kurtosis for stock
\(t \) = monthly data, 12/31/06 – 12/31/10

5) Regression Model
\[R_i = a + b (+EK) \]
\[R_i = a + b (-EK) \]
Where:
\(R_i \) = Return for \(i^{th} \) stock 2011 (\(i = 1 – 20 \))
+EK\(_i\) = Excess Kurtosis for positive returns
-EK\(_i\) = Excess Kurtosis for negative returns

6) Cross Sectional Regression Results

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Ind Var</th>
<th>N</th>
<th>R(^2)</th>
<th>A</th>
<th>B</th>
<th>T Stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Returns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/31/10 - 4/30/11</td>
<td>+ EK</td>
<td>16</td>
<td>0.032126</td>
<td>0.054749</td>
<td>0.004516</td>
<td>0.681688</td>
</tr>
<tr>
<td>9/30/11 - 2/29/12</td>
<td>+ EK</td>
<td>16</td>
<td>0.070409</td>
<td>0.092967</td>
<td>0.013366</td>
<td>0.320589</td>
</tr>
<tr>
<td>2011</td>
<td>+ EK</td>
<td>16</td>
<td>0.265734</td>
<td>0.026545</td>
<td>0.028709</td>
<td>2.250924</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Ind Var</th>
<th>N</th>
<th>R(^2)</th>
<th>A</th>
<th>B</th>
<th>T Stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Returns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/30/11 - 9/30/11</td>
<td>- EK</td>
<td>20</td>
<td>0.249835</td>
<td>-0.01929</td>
<td>-0.01382</td>
<td>-2.44842</td>
</tr>
<tr>
<td>2011</td>
<td>- EK</td>
<td>20</td>
<td>0.492338</td>
<td>0.186716</td>
<td>-0.02429</td>
<td>-4.17812</td>
</tr>
</tbody>
</table>

7) Conclusions
For +EK
- b is positive for all results
- \(R^2 \) is small
- Excluding stocks with extreme values both b coefficient and \(R^2 \) become more robust
- EK has predictive

For -EK
- B coefficients have right sign and are statistically significant
- \(R^2 \) – 25 to 49% of the variation in \(R_i \) is explained by EK