4-17-2013

An Automatic and Locally Tunable Transformation Function for Fog and Haze Removal in Aerial Imagery

Sai Babu Arigela
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Recommended Citation
http://ecommons.udayton.edu/stander_posters/202

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
An Automatic and Locally Tunable Transformation Function for Fog and Haze Removal in Aerial Imagery

Saibabu Arigela
Dr.Vijayan K.Asari

Objective

- To develop an algorithm which is capable of visibility and color restoration of objects in the weather affected regions (haze, fog, smoke, rain etc.,) of an image.
- This would help in automatic recognition of objects in bad weather conditions.

Technical Approach – Hazy/foggy image enhancement

Physics/optics based haze/fog formation model is

\[I(x) = J(x)I(x) + A(1 - e^(-d)) \]

where \(I(x) = \exp(-kd) \)

d is the depth information of a scene.

A is atmospheric light and is estimated from the luminance image J is the haze free image.

Specially designed nonlinear function

Luminance image is obtained using multi scale Gaussian of intensity image.

\[I_{2}(x, y) = \frac{I_{1}(x, y)^{20} + I_{2}(x, y)^{20} + 2I_{1}(x, y)I_{2}(x, y) + 2I_{1}(x, y) + 2I_{2}(x, y)^{20}}{2} \]

Adaptive estimation of \(z \) from luminance

- \(z \) value can be calculated as
 \[
 z = \begin{cases}
 0, & 0 \leq z < 50, \\
 -50, & 50 \leq z < 150, \\
 100, & 150 \leq z
 \end{cases}
 \]

Transmission estimation \(t(x) = 1 - I_{2}(x) \)

- The transmission image is processed using local median filtering to minimize the artifacts around depth edges
- The final color image is obtained by substituting the estimated transmission in the model equation.

Sample Results

Sample Images with Uniform Depth

Sample Images with Non-uniform Depth

Computational time

<table>
<thead>
<tr>
<th>Hazy Image Enhancement</th>
<th>MATLAB</th>
<th>C++</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image size (pixels)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400x2672</td>
<td>560 sec</td>
<td>0.429 sec</td>
</tr>
</tbody>
</table>

Sample results on bad weather conditions

Sample results on hazy aerial database

Sample results on under water images

Sample results on Mars images

Ongoing Research

- Use of multiple sensor information.
- Fusion of MWIR and RGB image information.
- Extend this technique to different weather conditions like rain, snow etc.,
- Integrate this system with complex lighting environments.