4-17-2013

The Kou Jump-Diffusion Model for Option Pricing

Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Recommended Citation
https://ecommons.udayton.edu/stander_posters/254

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Kou’s Model for Option Pricing
Gracie Fasano and Sophia S. Munyemana
Advisor: Ruihua Liu

Why Kou’s Model?
The Black-Scholes model has been a useful tool for option pricing in the financial market. However, there are two phenomena – the leptokurtic feature and the implied volatility curve – which it fails to capture. We looked at Kou’s model which accounts for these phenomena, and it leads to an analytical solution for many option pricing problems.

Kou’s Formula:
Below is the formula derived in Kou’s article. We can see that he uses a double summation that calls several other functions.

\[
Y(x; \sigma, \lambda, p, \eta_1, \eta_2; a, T) = \frac{e^{(a \eta_2 / \sigma^2)T/2}}{\sigma \sqrt{2\pi} T} \sum_{k=1}^{a} \sum_{l=1}^{a} \rho_{kl}(\sigma \eta_1 \sqrt{T})^k \left(a - \kappa T; -\eta_1, -\frac{1}{\sigma \sqrt{T}}, -\sigma \eta_1 \sqrt{T} \right) + e^{(a \eta_2 / \sigma^2)T/2} \sum_{k=1}^{a} \sum_{l=1}^{a} Q_{kl}(\sigma \eta_2 \sqrt{T})^k \left(a - \kappa T; -\eta_2, -\frac{1}{\sigma \sqrt{T}}, -\sigma \eta_2 \sqrt{T} \right) + \pi \sigma \left(a - \kappa T \right) \sqrt{T} \pi \sigma \left(a - \kappa T \right) \sqrt{T}
\]

Kou used the Upsilon equation to find the value of the option.

\[
V(0) = S_0 Y \left(r - \beta + \frac{1}{2} \sigma^2, \alpha, \lambda, p, \eta_1, \eta_2; \ln \left(\frac{K}{S_0} \right), T \right) - Ke^{-rT} Y \left(r - \beta + \frac{1}{2} \sigma^2, \alpha, \lambda, p, \eta_1, \eta_2; \ln \left(\frac{K}{S_0} \right), T \right)
\]

The \(Hh \) function can be viewed as a cumulative normal distribution function where the left tail has a polynomial growth rate and the right tail has an exponential decay.

Below are the \(Hh \) and \(l_n \) functions which are called in the Upsilon function above.

\[
Hh_n(x) = \int_x^\infty Hh_{n-1}(y)dy = \frac{1}{n} \int_x^\infty (t-x)^n e^{-\frac{t^2}{2}} dt
\]

\[
l_n(c; \alpha, \beta, \delta) = \int_c^\infty e^{\alpha x} Hh_n(\beta x - \delta) dx
\]

Density Function for Kou Model:
Below is the density function used in Kou’s model.

\[
f(x) = \begin{cases}
\frac{\rho_{11} e^{-\eta_1 x^2}}{1 - p} & \text{if } x \leq 1 \\
\frac{\rho_{22} e^{-\eta_2 x^2}}{1 - p} & \text{if } x > 1
\end{cases}
\]

Kou’s density function (blue) is plotted against the normal curve (red). It is clear to see that the Kou’s density function accounts for discontinuity and the fat tails.

MatLab and Results:
Below is a diagram that shows the MATLAB implementation and how the functions were called.

This table shows the values of European put options with changing stock prices.

<table>
<thead>
<tr>
<th>Stock Price</th>
<th>European Put Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>28.905672</td>
</tr>
<tr>
<td>75</td>
<td>23.940281</td>
</tr>
<tr>
<td>80</td>
<td>18.984290</td>
</tr>
<tr>
<td>85</td>
<td>14.080766</td>
</tr>
<tr>
<td>90</td>
<td>9.430457</td>
</tr>
<tr>
<td>95</td>
<td>5.490181</td>
</tr>
<tr>
<td>100</td>
<td>2.731259</td>
</tr>
<tr>
<td>105</td>
<td>1.205888</td>
</tr>
<tr>
<td>110</td>
<td>0.552363</td>
</tr>
<tr>
<td>115</td>
<td>0.31079</td>
</tr>
<tr>
<td>120</td>
<td>0.237269</td>
</tr>
<tr>
<td>125</td>
<td>0.200912</td>
</tr>
<tr>
<td>130</td>
<td>0.176826</td>
</tr>
</tbody>
</table>