A Novel High Quality Factor Tunable Band-stop Filter for Microwave Applications

Hailing Yue
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
http://ecommons.udayton.edu/stander_posters/382
I. **Objective**: The proposed Barium Strontium Titanate varactor-tuned Band-stop Filter is designed to achieve >30 dB rejection at 2-8GHz with <5dB pass-band insertion loss and high selectivity (unloaded Quality Factor of ~100 at 1GHz).

II. **Motivation**: A tunable band-stop filter is used to adaptively remove a narrow band of frequencies from the signal path of a receiver or transmitter. It largely reduces component size and cost compared to traditional filter-banks.

III. **Design**: The basic design concept is to use the inductive spiral signal line and capacitive varactor to form a series LC circuit, resulting in a band-stop behavior.

IV. **Fabrication**: The device were fabricated on 4” diameter Silicon and Sapphire wafer using standard photo-lithography and deposition techniques.

V. **Results**: The single unit device achieve 25-30dB rejection with unloaded Q of 70-100 at 2-8GHz, while the cascaded device have >100 of Q factor and ~40dB rejection at the same frequency range.

VI. **Summary**: A set of miniaturized high-Q tunable Band-stop filters have been designed using inductive spiral lines and BST varactors on Coplanar Waveguide transmission line. The fabrication process has started and the design concept will be verified shortly.