Serial Chains of Spherical Four-Bar Mechanisms to Achieve Design Helices

Kevin S. Giaier
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
http://ecommons.udayton.edu/stander_posters/513

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
SERIAL CHAINS OF SPHERICAL FOUR-BAR MECHANISMS TO ACHIEVE DESIGN HELICES

Kevin S. Giaier
Advisors: Andrew Murray, Ph.D, David Myszka, Ph.D
Department of Mechanical & Aerospace Engineering

SPHERICAL FOUR-BAR MECHANISMS

Motion is defined by the angle between each joint axis. Serial chains may be formed by connecting the coupler of one four-bar to the base link of the next.

DESIGNING THE SPHERICAL JOINT

The triangular body parameters are solved for using these equations. These values are constant for all the helices.

\[d^2 = d_j^2 + r_j^2 + h^2_j + b_j^2 + 2r_jh_j \cos(\phi_j - \theta_j) - 2J_jb_j\phi_j, \]
\[e^2 = d_j^2 + r_j^2 - 2\cos(\phi_j) r_j h_j + h_j^2, \]
\[k^2 = b_j^2 + 2h_j^2 - 2h_j^2 \cos(\phi_j). \]

The geometry of the joint to be copied is found with.

[\(\bar{G}_{ji} = T_j^{(i-1)} \bar{G} + \bar{K}_{j(i-1)} \),
\(\bar{n}_{ji} = T_j^{(i-1)} \bar{n} + \bar{K}_{j(i-1)}. \)]

A connecting link is designed to connect two joints. This device can now be copied infinitely to create a serial chain.

A shaft connected with universal joints can be used to actuate the device.

The helices are transformed to have the same starting base defined by the first triangular body.

Points on the design and companion helix identify the triangular body below.

Three design helices with their centers at the origin define three unique start points and targets for the mechanism.

[Image of diagrams and equations related to spherical four-bar mechanisms and helices.]