Singularity Traces of Planar Linkages That Include Prismatic and Revolute Joints

Saleh M. Almestiri
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
http://ecommons.udayton.edu/stander_posters/672

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Singularity Traces of Planar Linkages That Include Prismatic and Revolute Joints
Saleh M. Almestiri
Advisors: Dr. Andrew Murray & Dr. David Myszka

Introduction
Understanding the motion characteristics of a mechanism is an important step toward designing machinery to accomplish a given set of tasks. The purpose of this research is to understand the motion characteristics of a linkage as a design parameter is altered.

Method
I. Build a mathematical model for the linkage.
II. Find solutions for the set of equations in the mathematical model.
III. Validate the results by drawing the mechanism in SolidWorks.

Future Goals
Generating singularity traces for spatial mechanisms

Inverted Slider-Crank Mechanism

Inverted slider crank mechanism position vector loop

Slider-Crank Mechanism

Inverted Slider-Crank at a critical point

Inverted Slider-Crank at a singularity

Assur IV/3 Mechanism

Assur IV/3 linkage position vector loop

Assur IV/3 singularity trace

Spatial Mechanism

RCCC linkage

Spherical four bar mechanism