Multi-segment foot biomechanics with varying foot orthotic postings

Hilary F. Feskanin
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
http://ecommons.udayton.edu/stander_posters/669

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.
Multi-Segment Foot Joint Kinematics with Varying Midfoot Orthotic Postings
Hilary F. Feskanin
Advisor: Joaquin A. Barrios, PT, DPT, PhD
Co-Advisor: Kimberly Bigelow, PhD

Objective
Assess the effects of orthotic devices on midfoot and rearfoot kinematics.

Methodology
Tested 19 healthy females by attaching reflective markers to the right lower limb and foot and recorded gait mechanics using an 8-camera Vicon motion analysis system.

Materials
Subjects were testing wearing 4 different orthotic conditions: 1) 6 mm heel lift, 2) 6 degrees forefoot varus post, 3) 6 degrees forefoot valgus post, and 4) standard.

Results

Mean Midtarsal Transverse Angle Values by Condition

- The orthoses generally had limited effects on the ankle joint.
- The heel lift unexpectedly affected transverse plane
- We would usually expect the heel lift to raise the back of the foot and increase pronation-affecting the sagittal plane
- The varus post limited pronation
- The valgus post affected all 3 planes but only 2 of the changes support our prediction of increased pronation
- Study kinetic data to better explain our findings.

Ankle Joint
- Heel lift increased adduction on initial contact and the overall abduction excursion
- Varus post decreased peak abduction

Midtarsal Joint
- Heel lift led to more abduction at initial contact
- Varus post decreased the abduction excursion
- Valgus post decreased dorsiflexion excursion, increased eversion peak and excursion, and increased peak abduction

Discussion
- The heel lift unexpectedly affected transverse plane
- We would usually expect the heel lift to raise the back of the foot and increase pronation-affecting the sagittal plane
- The varus post limited pronation
- The valgus post affected all 3 planes but only 2 of the changes support our prediction of increased pronation

Future Work
- Study kinetic data to better explain our findings.
- Study subjects while running