
Follow this and additional works at: https://ecommons.udayton.edu/stander_posters

Part of the Arts and Humanities Commons, Business Commons, Education Commons, Engineering Commons, Life Sciences Commons, Medicine and Health Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons

Recommended Citation

https://ecommons.udayton.edu/stander_posters/715

This Book is brought to you for free and open access by the Stander Symposium at eCommons. It has been accepted for inclusion in Stander Symposium Posters by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mshlangen1@udayton.edu.
Identification of Potential AcrAB-TolC Efflux Pump Inhibitors in *Escherichia coli* using an Ethidium Bromide Method

Tyler Mack
Advisor: Dr. Matthew Lopper, Ph.D.

Research objective: To obstruct a bacterial efflux pump though physical binding of small molecule inhibitory compounds in order to combat substrate expulsion.

Introduction
- Antibiotic resistance in various bacteria
- Some resistance can be attributed to overexpression of efflux pumps
- Trimeric efflux complex uses proton motive force to move substrates through the periplasm, towards the extracellular space
- TolC protomer contains single 100 Å pore spanning entire subunit
- Evidence of a variety assembly mechanisms contributing to the formation of AcrAB-TolC pump

Materials and Methods

Virtual Screening:
- Target site: TolC subunit (protoplasmic pore) of AcrAB-TolC efflux complex
- Three source catalogs selected for screening (54,780 total compounds)
- PyRx AutoDock Vina used to screen for low predicted binding energies
 - Electrostatic and noncovalent interactions
 - Steric parameters

Results
- No significant difference in efflux levels in systems without prolonged compound incubation
- Efflux pump activity decreased in three out of five total systems with prolonged compound incubation

Discussion
- Lead-compounds introduced immediately before efflux may:
 - Not be able to make it to the intended site
 - Be easily metabolized
 - Be simply effluxed
- Efflux pump inhibition under prolonged compound incubation for select small molecules may:
 - Cause misfolding and conformational changes of the TolC protomer
 - Prevent assembly with the rest of the efflux complex

Future Research
- Immunostaining to determine AcrAB-TolC protein concentrations *in vivo* with and without prolonged compound incubation
- Gel electrophoresis to test for protein:protein interactions among AcrA, AcrB, and TolC in the presence and absence of the lead-compounds
- Screening of ZINC27215486 analogs to test compounds with similar effective binding patterns