Design, Fabrication and Testing Multi-Layered Metal Wire Grids Polarizer and Its Application in Polarization Imaging System

Pengfei Guo
University of Dayton, stander@udayton.edu

Follow this and additional works at: http://ecommons.udayton.edu/stander_posters

Recommended Citation
http://ecommons.udayton.edu/stander_posters/778
Multi-Layered Nanoscale Wire Grid Polarizers for Visible and Near-IR Imaging Systems

Pengfei Guo, David Lombardoe, Andrew M. Sarangan
Electro-Optics Graduate Program, University of Dayton

Introduction

Human eyes and conventional cameras can only perceive the wavelength of light as color, and intensity as brightness. However both of them ignore the polarization nature of light. Polarization describes the directional properties of electric field, which contains additional useful information about an image. Information about the polarization could be used in the identification of materials, non-contact fingerprint detection, remote sensing and computer vision.

Rigorous coupled Wave Analysis (RCWA) model

• Electric field in the incident, grating and substrate regions can be expanded in a set of plane waves satisfying the Floquet condition.
• Boundary conditions will be applied to solve for reflected and transmitted amplitudes in the incident and substrate medium as well as the mode amplitudes in the grating region.

Deep ultraviolet (UV) Interference lithography

• Coherent 266 nm light wave filtered, expanded, collimated to produce an uniform illumination on a Lloyd’s mirror.
• Lloyd’s mirror enables the periodic interference pattern between two

Methods

Objectives

• Develop a coupled wave model to study the multi-layered metal grid structures
• Fabricate a multi-layered wire grid polarizer using deep-UV interference lithography
• Evaluate its performance in the visible and near-infrared region.

Multi-layered Metal Wire Grids Polarizer

References