Parameter Identification in Structured Discrete-Time Uncertainties without Persistency of Excitation
Parameter Identification in Structured Discrete-Time Uncertainties without Persistency of Excitation

Ouboti Djaneye-Boundjou, Advisor: Raúl Ordóñez
Department of Electrical and Computer Engineering, University of Dayton

Background

- **System Identification:** Function approximation

 ![Uncertain Signal](input -> uncertain f -> output)

- **Sys-ID usage:** machine learning, adaptive control, . . .
- **Present study:**
 - Discrete-time (DT) structured uncertainties
 - $f(x(k)) = \theta^T \phi(x(k))$

 $$f(x(k)) = \frac{1}{4} \cdot 10 \exp \left(\frac{-|x(k) - x_0|^2}{4} \right) = \frac{1}{b(x(k))} \left[\frac{1}{\theta^T} \phi(x(k)) \right]$$

- Example:
 - $f_i(x(k)) = \frac{10}{4} \exp \left(\frac{-|x(k) - x_0|^2}{4} \right) = \frac{1}{b(x(k))} \left[\frac{1}{\theta^T} \phi(x(k)) \right]$

- Approximator
 - $\theta_i(k) \in \mathbb{R}^n$: estimate of θ_i updated via adaptation law
 - Parameter error $\hat{\theta}(k) \neq \theta$ (not computable)

- Compute estimation error
 - $q(k) = \frac{1}{\theta^T} \phi(x(k))$
 - $\hat{\theta}(k) \leftarrow \hat{\theta}(k) + \eta q(k)$

Parameter Identification (PI) Problem

Drive $\hat{\theta}(k) \to [0]^n$ or $\hat{\theta}(k) \to \theta$, causing $q(k) \to 0$, as $k \to \infty$

Motivation

- PI, i.e., $\hat{\theta}(k) \to 0$, leads to improved estimation performance
- Literature: traditional approximation methods guarantee PI provided persistency of excitation (very restrictive)
- Present study:
 - Develop an adaptive estimator with PI guarantees
 - Relax persistency of excitation requirement

Normalized Gradient (NG) Descent

- NG: traditional approach to approximation
- NG adaptation law: given an initial $\hat{\theta}(k)$,
 $$\hat{\theta}(k+1) = \hat{\theta}(k) - \eta \frac{\phi(x(k)) q(k)}{m^T(k)}$$

- $\eta > 0$: step size or learning rate or gain
- $m(k)$: normalization signal ensuring $\psi(x(k)) = \frac{\phi(x(k))}{m(k)}$
- Lyapunov stability analysis: we can show that $\hat{\theta}(k)$ remains bounded for all k if $0 < \eta < \pi_{NG}$
- PI, i.e., $\hat{\theta}(k) \to 0$, only if $\psi(x(k))$ is persistently exciting

Concurrent Learning (CL) Preliminaries

- CL: first introduced in continuous-time framework
- Use of memory:
 - Record past data for $k_0 < \tau_j < k$, with $j = 1, 2, \ldots, c_x$
 - $Z \in \mathbb{R}^{c_x \times n}$: history stack of $\psi(x(\tau_j))$ vectors
 - $\theta \in \mathbb{R}^n$: vector of $\psi(x(k))$ values
 - $\bar{Z} \in \mathbb{R}^{c_x \times n}$: vector of $\psi(x(\tau_j))$ values
- CL condition: Z contains r_0 linearly independent $\psi(x(\tau_j))$
- Less restrictive than persistency of excitation

Gradient-Based CL in DT

- Gradient-Based CL adaptation law: given an initial $\hat{\theta}(k_0)$,
 $$\hat{\theta}(k+1) = \hat{\theta}(k) - \eta \frac{\phi(x(k)) q(k)}{m^T(k)}$$

- Estimation error based on recorded data:
 $$\hat{\theta}(k) - \hat{\theta}(k) \leftarrow \hat{\theta}(k) - \eta \frac{\phi(x(\tau_j)) q(k)}{m^T(k)}$$

- Lyapunov stability analysis: granted CL condition is met, $\Omega - ZZ^T$ is positive definite and we prove that $\hat{\theta}(k) \to 0$ exponentially (PI) if $0 < \eta < \pi_{CL}$

Numerical Simulations

- Here, $f = f_1$ is approximated
- x is varied from $x_L \to -2\pi$ at k_0 to $x_H \to +3\pi$ at k_L uniformly
- How good is f if $\hat{\theta}(k)$ is frozen at each t to reconstruct f? Consider metric
 $$e(k) = \int_{k_0}^k |f(\hat{\theta}(k)) - f(x)| dx$$

Future Work

- How will CL fare with unstructured uncertainties?
- Apply CL adaptation law within a control loop