Document Type

Article

Publication Date

2008

Publication Source

Journal of Applied Physics

Abstract

Latent energy storage capacity was analyzed for a system consisting of carbon nanoparticlesdopedphase changematerials (PCMs). Three types of samples were prepared by doping shell wax with single wall carbon nanotubes(SWCNTs), multiwall CNTs, and carbon nanofibers. Differential scanning calorimetry was used to measure the latent heat of fusion. The measured values of latent heat for all the samples showed a good enhancement over the latent heat of pure wax. A maximum enhancement of approximately 13% was observed for the wax/SWCNT composite corresponding to 1% loading of SWCNT. The change in latent heat was modeled by using an approximation for the intermolecular attraction based on the Lennard-Jones potential. A theoretical model was formulated to estimate the overall latent energy of the samples with the variation in volume fraction of the nanoparticles. The predicted values of latent energy from the model showed good agreement with the experimental results. It was concluded that the higher molecular density of the SWCNT and its large surface area were the reasons behind the greater intermolecular attraction in the wax/SWCNT composite, which resulted in its enhanced latent energy. The novel approach used to predict the latent heat of fusion of the wax/nanoparticle composites has a particular significance for investigating the latent heat of PCM with different types of nanoparticle additives.

Inclusive pages

094302-1 to 094302-6

ISBN/ISSN

0021-8979

Document Version

Published Version

Comments

This document has been archived and made available for download in compliance with the publisher's policy on self-archiving. Permission documentation is on file.

Publisher

American Institute of Physics

Volume

103

Peer Reviewed

yes

Issue

9

Link to published version

Share

COinS