Title

A Reformer Performance Model for Fuel Cell Applications

Document Type

Article

Publication Date

1-2005

Publication Source

Journal of Power Sources

Abstract

A performance model for a reformer, consisting of the catalytic partial oxidation (CPO), high- and low-temperature water-gas shift (HTWGS and LTWGS), and preferential oxidation (PROX) reactors, has been formulated. The model predicts the composition and temperature of the hydrogen-rich reformed fuel-gas mixture needed for the fuel cell applications.

The mathematical model equations, based on the principles of classical thermodynamics and chemical kinetics, were implemented into a computer program. The resulting software was employed to calculate the chemical species molar flow rates and the gas mixture stream temperature for the steady-state operation of the reformer. Typical computed results, such as the gas mixture temperature at the CPO reactor exit and the profiles of the fractional conversion of carbon monoxide, temperature, and mole fractions of the chemical species as a function of the catalyst weight in the HTWGS, LTWGS, and PROX reactors, are here presented at the carbon-to-oxygen atom ratio (C/O) of 1 for the feed mixture of n-decane (fuel) and dry air (oxidant).

Inclusive pages

88–102

ISBN/ISSN

0378-7753

Comments

Permission documentation is on file.

Publisher

Elsevier

Volume

140

Peer Reviewed

yes

Issue

1


Share

COinS