Document Type


Publication Date


Publication Source

EURASIP Journal on Advances in Signal Processing


We present a new patch-based image restoration algorithm using an adaptive Wiener filter (AWF) with a novel spatial-domain multi-patch correlation model. The new filter structure is referred to as a collaborative adaptive Wiener filter (CAWF). The CAWF employs a finite size moving window. At each position, the current observation window represents the reference patch. We identify the most similar patches in the image within a given search window about the reference patch. A single-stage weighted sum of all of the pixels in the similar patches is used to estimate the center pixel in the reference patch. The weights are based on a new multi-patch correlation model that takes into account each pixel’s spatial distance to the center of its corresponding patch, as well as the intensity vector distances among the similar patches. One key advantage of the CAWF approach, compared with many other patch-based algorithms, is that it can jointly handle blur and noise. Furthermore, it can also readily treat spatially varying signal and noise statistics. To the best of our knowledge, this is the first multi-patch algorithm to use a single spatial-domain weighted sum of all pixels within multiple similar patches to form its estimate and the first to use a spatial-domain multi-patch correlation model to determine the weights. The experimental results presented show that the proposed method delivers high performance in image restoration in a variety of scenarios.



Document Version

Published Version


Permission documentation is on file.


European Association for Signal Processing



Peer Reviewed



Image restoration, Wiener filter, Correlation model, Patch-based processing

Link to published version