Reactive high power impulse magnetron sputtering of Zinc oxide for thin film transistor applications

Date of Award


Degree Name

Ph.D. in Materials Engineering


Department of Chemical and Materials Engineering


Advisor: Andrey A. Voevodin


Zinc oxide (ZnO) is an emerging thin film transistor (TFT) material for transparent flexible displays and sensor technologies, where low temperature synthesis of highly crystallographically ordered films over large areas is critically needed. This study maps plasma assisted synthesis characteristics, establishes polycrystalline ZnO growth mechanisms and demonstrates for the first time low-temperature and scalable deposition of semiconducting grade ZnO channels for TFT applications using reactive high power impulse magnetron sputtering (HiPIMS). Plasma parameters, including target currents, ion species and their energies were measured at the substrate surface location with mass spectroscopy as a function of pressure and applied voltage during HiPIMS of Zn and ZnO targets in O₂/Ar. The results were correlated to film microstructure development investigated with x-ray diffraction, atomic force microscopy, scanning electron microscopy and transmission electron microscopy which helped establish film nucleation and growth mechanisms. Competition for nucleation by (100), (101) and (002) oriented crystallites was identified at the early stages of film growth, which can result in a layer of mixed crystal orientation at the substrate interface, a microstructural feature that is detrimental to TFT performance due to increased charge carrier scattering in back-gated TFT devices. The study revealed that nucleation of both (100) and (101) orientations can be suppressed by increasing the plasma density while decreasing ion energy. After the initial nucleation layer, the microstructure evolves to strongly textured with the (002) crystal plane oriented parallel to the substrate surface. The degree of (002) alignment was pressure-dependent with lower deposition pressures resulting in films with (002) alignment less than 3.3°, a trend attributed to less energy attenuation of the low energy (2- 6 eV) Ar⁺, O⁺, and O₂⁺ ions observed with mass spectrometry measurements. At pressures of 7 mTorr and lower, a second population of ionized gas (Ar⁺, O⁺, and O₂⁺) species with energies up to 50 eV appeared. The presence of higher energy ions corresponded with a bimodal distribution of ZnO grain sizes, confirming that high energy bombardment has significant implications on microstructural uniformity during large area growth. Based on the established correlations between process parameters, plasma characteristics, film structure and growth mechanisms, optimum deposition conditions for (002) oriented nanocrystalline ZnO synthesis at 150 °C were identified and demonstrated for both silicon oxide wafers of up to 4 inch diameter and on flexible polymer (Kapton) substrates. The feasibility of the low temperature processing of ZnO films for TFT applications was verified by preliminary tests with back-gated device prototypes. Directions of future research are outlined to further develop this low temperature growth method and apply results of this study for ZnO applications in semiconductor devices.


Thin film transistors Design and construction, Zinc oxide thin films, Sputtering (Physics), Materials Science, High Power Impulse Magnetron Sputtering, Zinc Oxide, Thin Film Growth, Plasma Processing

Rights Statement

Copyright 2015, author