FPGA-based coherent doppler processor for marine radar applications

Date of Award

2016

Degree Name

Ph.D. in Electrical Engineering

Department

Department of Electrical and Computer Engineering

Advisor/Chair

Advisor: Michael C. Wicks

Abstract

The goal of this research is to develop a method for affordable and reliable sampling and coherent processing of measurement data collected via a modified magnetron oscillator based marine radar system. Non-coherent low-priced marine radar systems offer limited surveillance in clutter rich environments as compared to more expensive and complex coherent solid state radar systems. The approach used herein leverages modern analog to digital converters (ADC) and field programmable gate array (FPGA) technology to affordably and effectively sample the radiated and received signals for further analysis using FFT-based Doppler processing or cross correlation analysis. Track processing of moving targets is fundamental to any advanced radar and is a further focus of this research. The marine radar hardware is modified to capture the transmit signal at the source, and the receive signal at the aperture, for processing via FPGAs. The receive pulse train is cross-correlated with the transmit pulse train reference to remove the uncertainties in the phase history of the collected data. This operation ultimately makes the radar fully coherent on receive. Once the receive signal is made coherent, classical Doppler processing is used to differentiate moving targets from clutter and electromagnetic interference. A real time system has been built on a board with ADCs, FPGAs, and a microprocessor. Mixing of the Transmit (TX) and the Receive (RX) signals, Fourier transform analysis, and Pulse Compression are all executed digitally in the FPGA whereas Doppler Processing is performed on the microprocessor. This paper presents the underlying principles of cohering signals on receive, and it will show a real-time implementation of such algorithms using FPGAs.

Keywords

Tracking radar, Coherent radar, Signal processing Digital techniques Data processing, Field programmable gate arrays, Analog-to-digital converters, Electrical Engineering, Engineering, Radar, FPGA, FPGA Radar, Coherent Radar, non coherent radar, FPGA Doppler, FFT Doppler, Marine Radar, FPGA marine

Rights Statement

Copyright © 2016, author

Share

COinS