Title

Low noise frequency comb sources based on synchronously pumped doubly resonant optical parametric oscillators

Author

Chenchen Wan

Date of Award

2017

Degree Name

Ph.D. in Electro-Optics

Department

Department of Electro-Optics and Photonics

Advisor/Chair

Advisor: Andy C. Chong

Abstract

Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate coherent laser-like radiations at which frequency the common gain material is not available. It is also a good candidate for extend frequency comb spectral range, for comb generation, the OPO is usually pumped by a comb source thus the OPO cavity needs to be synchronized to the pump pulses. Depending on whether the signal or idle light is in resonance, the OPO could be singly or doubly resonant. The doubly resonant OPO (DOPO) has much lower lasing threshold since both signal and idle are in resonance, but it also requires more cavity stability and was historically considered unstable for operation. However, recent research has proved that the synchronously pumped doubly resonant OPO could operate even without active cavity stabilization. Moreover, when the OPO is in degenerate state where the signal and idler are identical the OPO will remain frequency stabilized because it's acting as a frequency divide-by-2 system. This makes the DOPO an excellent candidate for extending the frequency comb spectral range to mid-IR by pumping with a frequency comb at near IR wavelength.In the dissertation, first a 1 um Yb-doped fiber oscillator will be frequency stabilized to generate a frequency comb. The repetition rate is locked indirectly by locking the Yb laser to a stabilization single frequency laser and the CEO frequency is locked by f-2f self-reference. The fully locked 1 um comb is then used to pump a DOPO. The DOPO can operate at either degenerate or non-degenerate states by tuning its cavity length. To characterize the OPO, its output spectral, output power will be measured. More importantly the CEO frequency of the OPO will also need to be simultaneously measured in order to verify and study the self stabilization of DOPO at degeneracy. To quantify the coherence property of the DOPO, the CEO frequency noise transfer function will also be measured, the pump comb is frequency modulated with an acousto-optic modulator (AOM) and the transfer function could be measured by measuring the DOPO CEO frequency phase noise. The DOPO would be a self-locked comb source if it fully inherits the pump comb coherence. This enables measuring the CEO frequency phase noise of the unlocked DOPO comb to be compared with the pump phase noise quantitatively. In the second part of the dissertation, the intensity noise of a soliton mode-locked laser is studied. The soliton is a pulse with perfect balance of dispersion and nonlinearity so it can propagate without any change of its spectral and temporal shape. In this project, an all-fiber Er soliton laser will be build. Due to the perturbation of cavity elements such as segmental gain and loss, the soliton generate dispersive wave that co-propagates inside the cavity. Notably the dispersive wave with the same phase shift of the soliton can interfere with the soliton and produce spectral peaks known as Kelly sidebands. In this work, the spectrally resolved intensity noise coupling in the soliton laser is studied. The results reveal that most of the intensity noise from the pump is couple to the Kelly sidebands while the soliton is much quieter in terms of intensity noise. In the last part of the dissertation, the 3D wave packets generation and measurement system are introduced. A SLM-based pulse shaper and beam shaper are used to generate special 3D optical wave packets from a mode-locked fiber laser. The programmable SLM enables generation of varies beam and pulse shapes. In particular, the so called wave bullets are generated with combination of diffraction free Bessel beams and dispersion free Airy pulses. To measure the 3D wave packets, a cross-correlation interferometer is demonstrated to have the capacity to reconstruct the full 3D intensity profiles of the complex wave packets.

Keywords

Mode-locked lasers Noise, Optical parametric oscillators Noise, Optics

Rights Statement

Copyright 2017, author

Share

COinS