Design and simulation of multifunctional optical devices using metasurfaces

Date of Award


Degree Name

Ph.D. in Materials Engineering


Department of Chemical and Materials Engineering


Advisor: Qiwen Zhan


In classical optics, optical components such as lenses and microscopes are unable to focus the light into deep subwavelength or nanometer scales due to the diffraction limit. However, recent developments in nanophotonics, have enabled researchers to control the light at subwavelength scales and overcome the diffraction limit. Using subwavelength structures, we can create a new class of optical materials with unusual optical responses or with new properties that are not attainable in nature. Such artificial materials can be created by structuring conventional materials on the subwavelength scale, giving rise to the unusual optical properties due to the electric and magnetic responses of each meta-atom. These materials are called metamaterials or engineered materials that exhibit exciting phenomena such as non-linear optical responses and negative refraction. Metasurfaces are two dimensional meta-atoms arranged as an array with subwavelength distances. Therefore, metasurfaces are planar, ultrathin version of metamaterials that offer fascinating possibilities of manipulating the wavefront of the optical fields. Recently, the control of light properties such as phase, amplitude, and polarization has been demonstrated by introducing abrupt phase change across a subwavelength scale. Phase discontinuities at the interface can be attained by engineered metasurfaces with new applications and functionalities that have not been realized with bulk or multilayer materials. In this work, high efficient, planar metasurfaces based on geometric phase are designed to realize various functionalities. The designs include metalenses, axicon lenses, vortex beam generators, and Bessel vortex beam generators. The capability of planar metasurfaces in focusing the incident beams and shaping the optical wavefront is numerically demonstrated. COMSOL simulations are used to prove the capability of these metasurfaces to transform the incident beams into complex beams that carry orbital angular momentum (OAM). New designs of ultrathin, planar metasurfaces may result in development of a new type of photonic devices with reduced loss and broad bandwidth. The advances in metasurface designs will lead to ultrathin devices with surprising functionalities and low cost. These novel designs may offer more possibilities for applications in quantum optic devices, pulse shaping, spatial light modulators, nano-scale sensing or imaging, and so on.


Optical materials Design and construction, Metamaterials Optical properties, Nanostructured materials Optical properties, Materials Science, Optics, Engineering, Design, Ultrathin Metasurfaces, Optical Devices, Lens Design, Optical Design

Rights Statement

Copyright 2017, author