Document Type


Publication Date


Publication Source

Proceedings of the Berry Summer Thesis Institute


This review describes oxygen consumption, both in terms of a goal of weight management and aerobic training. It introduces excess postexercise oxygen consumption (EPOC) and the benefits that can come from it. EPOC can aid in weight management as a means to continue to expend energy even after exercise has ceased. This review also discusses the many determinants of EPOC and analyzes the effects of various conditions on the elevated consumption. Such conditions include duration and intensity of exercise, training status, and supplementation. Later discussed are the possible underlying mechanisms and how they are responsible for EPOC. Although they have yet to be well-understood, these mechanisms provide insight into how EPOC is facilitated and why it occurs at all. More research is being conducted in attempts to better understand this concept and how EPOC can be advantageous to our human health.

Consistent aerobic exercise leads to many health benefits such as a positive impact on blood lipid levels and blood pressure, as well as increased energy expenditure for healthy weight management. Additionally, regular aerobic exercise can positively affect mental health, such as reducing depression and anxiety (Mersy, 1991). In general, aerobic exercise decreases the risk of the development of cardiovascular disorders, or disorders that affect the heart, blood vessels, or both. Given the significant burden of cardiovascular disease, aerobic exercise is a commonly prescribed lifestyle modification and is therefore important to fully understand.

Regular aerobic exercise causes the body to increase its oxygen consumption, otherwise known as its VO2. The consumption of oxygen fuels mitochondrial activity within muscle cells to produce ATP, the primary energy currency of all cells. During exercise, increased ATP is necessary in order to fuel contraction-relaxation cycles of muscles that together allow for body movement. With prolonged activity, the substrate for oxidative metabolism can come from stored energy sources, promoting weight loss. Ultimately it is the mass balance of energy intake versus energy expenditure that determines whether one will gain, lose, or maintain weight.

Inclusive pages


Document Version

Published Version


This research was conducted in the University of Dayton Department of Health and Sport Science as part of Grace Kocoloski's work in the Berry Summer Thesis Institute and the University Honors Program. Thesis mentor and corresponding author: Anne R. Crecelius, Department of Health and Sport Science.

Permission documentation is on file.


University of Dayton