Authors

Presenter(s)

Ashish Gogia

Files

Download

Download Project (1.6 MB)

Description

Polymeric systems such as natural rubber used in car and truck tires require the addition of suitable additives for the enhancement of numerous properties, including reinforcement and durability. The behavior of such fillers, (carbon black, silica, and metal oxides and some combination thereof), and their influence on nanocomposite effectiveness, depends on the filler structure, the interaction between filler-polymer matrix as well as the processing history. To understand this problem, we perform Dissipative Particle Dynamics (DPD) simulation of these blends, varying polymer-polymer, filler-filler, and polymer-filler interaction energy. We will discuss the effects of interaction strength, the scaling of polymer chains, and methods to quantify the filler percolation threshold and mesh size as a function of filler concentration. In addition, the simulation results are also validated experimentally through small-angle x-ray scattering data to provide insight and understanding of how these complex structures develop in these multicomponent systems.

Publication Date

4-22-2020

Project Designation

Graduate Research

Primary Advisor

Vikram Krishna Kuppa

Primary Advisor's Department

UDRI - Materialography and Analytics

Keywords

Stander Symposium project, School of Engineering

United Nations Sustainable Development Goals

Industry, Innovation, and Infrastructure

New Insights into Hierarchical Structures in Polymer Nanocomposites: A Dissipative Particle Dynamics (DPD) Simulation Study

Share

COinS