Thermal Energy Production and Heat Exchange between an Electrochemical Cell and Its Surroundings

Thermal Energy Production and Heat Exchange between an Electrochemical Cell and Its Surroundings

Authors

Presenter(s)

Shane Kosir

Files

Description

Thermal energy production in an electrochemical cell must be controlled to avoid its excessive heating and rupture due to the cell internal pressure rise; especially if the cell electrolyte is a solution of a salt in a liquid solvent. The scheme, used to develop the theoretical formulation presented in this work to predict cell temperature during its discharge, incorporates both the reversible production of thermal energy due to changes in enthalpy of the reactive system and the irreversible production of thermal energy due to cell voltage losses associated with the species transport in the cell electrolyte, electrode components, current collectors, and the electrochemical reactions involving charge transfer at the electrolyte-electrode interfaces. The developed theoretical formulation predicts the cell temperature as a function of time during the cell discharge period under adiabatic and nonadiabatic conditions for a given cell discharge current and its initial temperature. The computed cell temperature versus time data for an ideal (i.e., model) button cell are presented in the form of plots for some discharge currents and are discussed in the light of cell component thermal stability and its safe discharge operation.

Publication Date

4-22-2021

Project Designation

Graduate Research

Primary Advisor

Sarwan S. Sandhu

Primary Advisor's Department

Chemical and Materials Engineering

Keywords

Stander Symposium project, School of Engineering

United Nations Sustainable Development Goals

Affordable and Clean Energy; Industry, Innovation, and Infrastructure

Thermal Energy Production and Heat Exchange between an Electrochemical Cell and Its Surroundings

Share

COinS