Summer Conference on Topology and Its Applications

Document Type

Topology + Dynamics and Continuum Theory

Publication Date


Publication Source

32nd Summer Conference on Topology and Its Applications


Let X be a continuum. A topological property P is said to be a sequential decreasing strong size property provided that if μ is a strong size map for Cn(X), {tn} is a sequence in the interval (t, 1) such that limtn = t and each fiber μ-1 (tn) has the property P, then μ-1 (t) has the property P. We show that the following properties are sequential decreasing strong size properties: be a Kelley continuum, indecomposability, local connectedness, continuum chainability and unicoherence.


This document is available for download with the permission of the presenting author and the organizers of the conference. Permission documentation is on file.

Technological limitations may prevent some mathematical symbols and functions from displaying correctly in this record’s metadata fields. Please refer to the attached PDF for the correct display.