Honors Theses

Advisor

Kristen Krupa Comfort

Department

Chemical and Materials Engineering

Publication Date

4-26-2020

Document Type

Honors Thesis

Abstract

Due to their unique physicochemical properties, nanoparticle (NP)-based technologies are growing exponentially in scope and economic importance. This has created a vital need to fully understand the potential biological consequences of NP exposure, characterize resulting NP-biological interfaces, and determine subsequent toxicological effects. The goal of this research project is to design an enhanced microenvironment model (EMM) that combines the advantages of in vitro and in vivo physiological models to evaluate NP characteristics under physiologically relevant conditions. An EMM was constructed that incorporates multiple cell lines, an immune system component, and physiologically relevant flow conditions. This model was tested for AgNP deposition, cellular viability, and immune responses and compared to the typical in vitro physiological model. Overall interpretation of the results supports the use of an EMM for cellular response characterization.

Permission Statement

This item is protected by copyright law (Title 17, U.S. Code) and may only be used for noncommercial, educational, and scholarly purposes.

Embargoed until Sunday, June 23, 2120


Share

COinS