Books and Book Chapters by University of Dayton Faculty

Unraveling Alzheimer’s Disease Using Drosophila

Unraveling Alzheimer’s Disease Using Drosophila


Link to Full Text

Download Full Text


Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder that predominantly affects people aged over 65 years. AD is marked by cognitive deficits and memory problems that worsen with age and ultimately results in death. Pathology of AD includes aggregation of the amyloid beta peptide into extracellular plaques and the presence of hyperphosphorylated tau in intracellular neurofibrillary tangles. Given that many factors are involved in the disease along with the ability to study individual aspects of disease pathology under controlled conditions, several genetically tractable animal models have been developed. Despite years of research, treatments remain limited and many therapies that yield promising data in animal models fail to translate it in humans. Here, we discuss the use of a highly versatile Drosophila melanogaster (aka fruit fly) model to study AD. The genetic machinery is conserved from fly to humans. The Drosophila eye has proved to be a genetically tractable model to study neurodegenerative disorders and for genetic and chemical screens. We highlight the utility of modeling AD by expressing human Aβ42 in the developing Drosophila retina. This system has been used recently to uncover new factors involved in the pathological activation of cell death pathways in AD. We discuss these findings and their role in the search for new disease treatments.



Publication Date


Publication Source

Insights into Human Neurodegeneration: Lessons Learnt from Drosophila




Biology | Cell and Developmental Biology

Unraveling Alzheimer’s Disease Using Drosophila