Title
The Biological Impact of Concurrent Exposure to Metallic Nanoparticles and a Static Magnetic Field
Document Type
Article
Publication Date
10-2013
Publication Source
Bioelectromagnetics
Abstract
The rapid advancement of technology has led to an exponential increase of both nanomaterial and magnetic field utilization in applications spanning a variety of sectors. While extensive work has focused on the impact of these two variables on biological systems independently, the existence of any synergistic effects following concurrent exposure has yet to be investigated. This study sought to ascertain the induced alterations to the stress and proliferation responses of the human adult low calcium, high temperature keratinocyte (HaCaT) cell line by the application of a static magnetic field (approximately 0.5 or 30 mT) in conjunction with either gold or iron oxide nanoparticles for a duration of 24 h. By evaluating targets at a cellular, protein, and genetic level a complete assessment of the HaCaT response was generated. A magnetic field-dependent proliferative effect was found (∼15%), which correlated with a decrease in reactive oxygen species and a simultaneous increase in ki67 expression, all occurring independently of nanoparticle presence. Furthermore, the application of a static magnetic field was able to counteract the cellular stress response induced by nanoparticle exposure through a combination of decreased reactive oxygen species production and modification of gene regulation. Therefore, we conclude that while these variables each introduce the potential to uniquely influence physiological events, no negative synergistic reactions were identified.
Inclusive pages
500–511
ISBN/ISSN
0197-8462
Document Version
Postprint
Copyright
Copyright © 2013, Wiley Periodicals
Publisher
Wiley Periodicals
Volume
34
Peer Reviewed
yes
Issue
7
Sponsoring Agency
711th HPW/AFRL Chief Scientist Seedling Program; Air Force Surgeon General; National Research Council; Air Force Office of Scientific Research; Oak Ridge Institute for Science and Education; Henry M. Jackson Foundation
eCommons Citation
Comfort, Kristen K.; Maurer, Elizabeth I.; and Hussain, Saber M., "The Biological Impact of Concurrent Exposure to Metallic Nanoparticles and a Static Magnetic Field" (2013). Chemical and Materials Engineering Faculty Publications. 173.
https://ecommons.udayton.edu/cme_fac_pub/173
Included in
Other Chemical Engineering Commons, Other Materials Science and Engineering Commons, Petroleum Engineering Commons, Polymer and Organic Materials Commons, Thermodynamics Commons
Comments
This document is the authors' accepted manuscript, provided for download in compliance with the publisher's policy on self-archiving. Some differences may be present between the document and the version of record.
Permission documentation is on file.