Linear Relaxations of Polynomial Positivity for Polynomial Lyapunov Function Synthesis
Document Type
Article
Publication Date
9-2016
Publication Source
IMA Journal of Mathematical Control and Information
Abstract
We examine linear programming (LP) based relaxations for synthesizing polynomial Lyapunov functions to prove the stability of polynomial ordinary differential equations (ODEs). Our approach starts from a desired parametric polynomial form of the polynomial Lyapunov function. Subsequently, we encode the positive definiteness of the function, and the negation of its derivative, over the domain of interest. We first compare two classes of relaxations for encoding polynomial positivity: relaxations by sum-of-squares (SOS) programmes, against relaxations based on Handelman representations and Bernstein polynomials, that produce linear programmes. Next, we present a series of increasingly powerful LP relaxations based on expressing the given polynomial in its Bernstein form, as a linear combination of Bernstein polynomials. Subsequently, we show how these LP relaxations can be used to search for Lyapunov functions for polynomial ODEs by formulating LP instances. We compare our techniques with approaches based on SOS on a suite of automatically synthesized benchmarks.
Inclusive pages
723–756
ISBN/ISSN
0265-0754
Copyright
Copyright © 2015, the Author(s)
Publisher
Oxford University Press
Volume
33
Peer Reviewed
yes
Issue
3
eCommons Citation
Sassi, Mohamed Amin Ben; Sankaranarayanan, Sriram; Chen, Xin; and Ábrahám, Erika, "Linear Relaxations of Polynomial Positivity for Polynomial Lyapunov Function Synthesis" (2016). Computer Science Faculty Publications. 127.
https://ecommons.udayton.edu/cps_fac_pub/127
COinS
Comments
Permission documentation on file.