Document Type
Article
Publication Date
7-2014
Publication Source
Journal of Cyber Security and Mobility on Big Data Theory and Practice
Abstract
With the explosive growth of web-based cameras and mobile devices, billions of photographs are uploaded to the internet. We can trivially collect a huge number of photo streams for various goals, such as image clustering, 3D scene reconstruction, and other big data applications. However, such tasks are not easy due to the fact the retrieved photos can have large variations in their view perspectives, resolutions, lighting, noises, and distortions. Furthermore, with the occlusion of unexpected objects like people, vehicles, it is even more challenging to find feature correspondences and reconstruct realistic scenes. In this paper, we propose a structure-based image completion algorithm for object removal that produces visually plausible content with consistent structure and scene texture. We use an edge matching technique to infer the potential structure of the unknown region. Driven by the estimated structure, texture synthesis is performed automatically along the estimated curves. We evaluate the proposed method on different types of images: from highly structured indoor environment to natural scenes. Our experimental results demonstrate satisfactory performance that can be potentially used for subsequent big data processing, such as image localization, object retrieval, and scene reconstruction. Our experiments show that this approach achieves favorable results that outperform existing state-of-the-art techniques.
Inclusive pages
263-288
ISBN/ISSN
2245-1439
Document Version
Published Version
Copyright
Copyright © 2014, River Publishers
Publisher
River Publishers
Volume
3
Peer Reviewed
yes
Issue
3
eCommons Citation
Shen, Ju; Yang, Jianjun; Taha Abu Sneineh, Sami; Payne, Bryson; and Hitz, Markus, "Structure Preserving Large Imagery Reconstruction" (2014). Computer Science Faculty Publications. 44.
https://ecommons.udayton.edu/cps_fac_pub/44
Included in
Databases and Information Systems Commons, Graphics and Human Computer Interfaces Commons, Information Security Commons, Numerical Analysis and Scientific Computing Commons, OS and Networks Commons, Other Computer Sciences Commons, Programming Languages and Compilers Commons, Software Engineering Commons, Systems Architecture Commons, Theory and Algorithms Commons
Comments
This document is provided for download in compliance with the publisher's open-access policies. Permission documentation is on file.