Multispectroscopic (FTIR, XPS, and TOFMS−TPD) Investigation of the Core−Shell Bonding in Sonochemically Prepared Aluminum Nanoparticles Capped with Oleic Acid

Document Type

Article

Publication Date

2010

Publication Source

Journal of Physical Chemistry C

Abstract

Organically capped metal nanoparticles are an attractive alternative to more conventional oxide-passivated materials, due to the lower reaction temperatures and the possibility of tuning the organic coating. Sonochemical methods have been used to produce small (∼5 nm average size) air-stable aluminum nanoparticles capped with oleic acid. In order to understand the nature of the metal−organic bonding in the nanoparticles, we have used FTIR, XPS, and TOFMS−TPD techniques to study the organic passivation layer and its desorption at elevated temperatures. In the present case we find that the organic layer appears to be attached via Al−O−C bonds with the C atom formerly involved in the carboxylic acid functional group.

Inclusive pages

6377–6380

ISBN/ISSN

1932-7447

Comments

Permission documentation is on file.

Publisher

American Chemical Society

Volume

114

Peer Reviewed

yes

Issue

14


Share

COinS