Document Type

Article

Publication Date

2013

Publication Source

Journal of Applied Physics

Abstract

Aluminum nanoparticles and explosive formulations that incorporate them have been a subject of ongoing interest due to the potential of aluminum particles to dramatically increase energy content relative to conventional organic explosives. We have used time-resolved atomic and molecular emission spectroscopy to monitor the combustion of aluminum nanoparticles within the overall chemical dynamicsof post-detonation fireballs. We have studied the energy release dynamics of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) charges incorporating three types of aluminum nanoparticles: commercial oxide-passivated nanoparticles, oleic acid-capped aluminum nanoparticles (AlOA), and nanoparticles in which the oxide shell of the particle has been functionalized with an acrylic monomer and copolymerized into a fluorinated acrylic matrix (AlFA). The results indicate that the commercial nanoparticles and the AlFAnanoparticles are oxidized at a similar rate, while the AlOA nanoparticles combust more quickly. This is most likely due to the fact that the commercial nano-Al and the AlFA particles are both oxide-passivated, while the AlOA particles are protected by an organic shell that is more easily compromised than an oxide layer. The peak fireball temperatures for RDX charges containing 20 wt. % of commercial nano-Al, AlFA, or AlOA were ∼3900 K, ∼3400 K, and ∼4500 K, respectively.

Inclusive pages

044907-1 to 044907-5

ISBN/ISSN

0021-8979

Document Version

Published Version

Comments

This document is provided for download in compliance with the publisher's policy on self-archiving. Permission documentation is on file.

Publisher

American Institute of Physics

Volume

113

Peer Reviewed

yes


Share

COinS