Document Type
Article
Publication Date
5-2011
Publication Source
Optical Engineering
Abstract
Generation of chaos from acousto-optic (A-O)Bragg cell modulators with an electronic feedback has been studied for over 3 decades. Since an acousto-optic Bragg cell with zeroth- and first-order feedback exhibits chaotic behavior past the threshold for bistability, such a system was recently examined for possible chaotic encryption of simple messages (such as a low-amplitude sinusoidal signal) applied via the bias input of the sound cell driver. Subsequent recovery of the message signal was carried out via a heterodyne-type strategy employing a locally generated chaotic carrier, with threshold parameters matched to the transmitting Bragg cell.
In this paper, we present numerical results and detailed interpretations for signal encryption and recovery under hybrid A-O electronic feedback using a heterodyne strategy. Important features of this setup, such as the system robustness in terms of parameter matching (feedback gain, dc bias, and time delay) are also examined in some detail.
Inclusive pages
055002-1 to 055002-14
ISBN/ISSN
0091-3286
Document Version
Published Version
Copyright
Copyright © 2014, Society of Photo-optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited.
Publisher
Society of Photo-optical Instrumentation Engineers
Volume
50
Peer Reviewed
yes
Issue
5
eCommons Citation
Chatterjee, Monish Ranjan and Al-Saedi, Mohammed A., "Examination of Chaotic Signal Encryption and Recovery for Secure Communication using Hybrid Acousto-optic Feedback" (2011). Electrical and Computer Engineering Faculty Publications. 330.
https://ecommons.udayton.edu/ece_fac_pub/330
Included in
Computer Engineering Commons, Electrical and Electronics Commons, Electromagnetics and Photonics Commons, Optics Commons, Other Electrical and Computer Engineering Commons, Systems and Communications Commons
Comments
This document is provided for download in compliance with the publisher's policy on self-archiving. Permission documentation is on file.
DOI: http://dx.doi.org/10.1117/1.3574106