Document Type

Conference Paper

Publication Date

7-1-2019

Publication Source

Proceedings of the IEEE National Aerospace Electronics Conference, NAECON

Abstract

Lung segmentation plays a crucial role in computer-aided diagnosis using Chest Radiographs (CRs). We implement a U-Net architecture for lung segmentation in CRs across multiple publicly available datasets. We utilize a private dataset with 160 CRs provided by the Riverain Medical Group for training purposes. A publicly available dataset provided by the Japanese Radiological Scientific Technology (JRST) is used for testing. The active shape model-based results would serve as the ground truth for both these datasets. In addition, we also study the performance of our algorithm on a publicly available Shenzhen dataset which contains 566 CRs with manually segmented lungs (ground truth). Our overall performance in terms of pixel-based classification is about 98.3% and 95.6% for a set of 100 CRs in Shenzhen dataset and 140 CRs in JRST dataset. We also achieve an intersection over union value of 0.95 at a computation time of 8 seconds for the entire suite of Shenzhen testing cases.

Inclusive pages

279-284

ISBN/ISSN

0547-3578

Document Version

Postprint

Comments

The document available for download is the authors' accepted manuscript, provided in compliance with the publisher's policy on self-archiving. Permission documentation is on file. To view the version of record, use the DOI: https://doi.org/10.1109/NAECON46414.2019.9058086

Keywords

Chest Radiographs, Convolutional Neural Networks, Lung Segmentation, U-Net, University of Dayton Electro-optics and Photonics


Share

COinS