Document Type
Article
Publication Date
3-5-2019
Publication Source
Electronics
Abstract
In recent years, deep learning has garnered tremendous success in a variety of application domains. This new field of machine learning has been growing rapidly and has been applied to most traditional application domains, as well as some new areas that present more opportunities. Different methods have been proposed based on different categories of learning, including supervised, semi-supervised, and un-supervised learning. Experimental results show state-of-the-art performance using deep learning when compared to traditional machine learning approaches in the fields of image processing, computer vision, speech recognition, machine translation, art, medical imaging, medical information processing, robotics and control, bioinformatics, natural language processing, cybersecurity, and many others. This survey presents a brief survey on the advances that have occurred in the area of Deep Learning (DL), starting with the Deep Neural Network (DNN). The survey goes on to cover Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), including Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network (DBN), Generative Adversarial Network (GAN), and Deep Reinforcement Learning (DRL). Additionally, we have discussed recent developments, such as advanced variant DL techniques based on these DL approaches. This work considers most of the papers published after 2012 from when the history of deep learning began. Furthermore, DL approaches that have been explored and evaluated in different application domains are also included in this survey. We also included recently developed frameworks, SDKs, and benchmark datasets that are used for implementing and evaluating deep learning approaches. There are some surveys that have been published on DL using neural networks and a survey on Reinforcement Learning (RL). However, those papers have not discussed individual advanced techniques for training large-scale deep learning models and the recently developed method of generative models.
ISBN/ISSN
2079-9292
Document Version
Published Version
Publisher
MDPI
Volume
8
Peer Reviewed
yes
Issue
3
Sponsoring Agency
National Science Foundation (NSF) ; NSF - Directorate for Computer & Information Science & Engineering (CISE) ; NSF - Directorate for Engineering (ENG) ; NSF - Division of Electrical, Communications & Cyber Systems (ECCS)
eCommons Citation
Alom, Md Zahangir; Taha, Tarek M.; Yakopcic, Christopher; Westberg, Stefan; Sidike, Paheding; Nasrin, Mst Shamima; Hasan, Mahmudul; Essen, Brian C. Van; Awwal, Abdul A. S.; and Asari, Vijayan K., "A State-of-the-Art Survey on Deep Learning Theory and Architectures" (2019). Electrical and Computer Engineering Faculty Publications. 457.
https://ecommons.udayton.edu/ece_fac_pub/457
Included in
Computer Engineering Commons, Electrical and Electronics Commons, Electromagnetics and Photonics Commons, Optics Commons, Other Electrical and Computer Engineering Commons, Systems and Communications Commons
Comments
This open-access article is provided for download in compliance with the publisher’s policy on self-archiving. To view the version of record, use the DOI: https://doi.org/10.3390/electronics8030292