Document Type
Article
Publication Date
11-18-2022
Publication Source
AI
Abstract
Lung segmentation plays an important role in computer-aided detection and diagnosis using chest radiographs (CRs). Currently, the U-Net and DeepLabv3+ convolutional neural network architectures are widely used to perform CR lung segmentation. To boost performance, ensemble methods are often used, whereby probability map outputs from several networks operating on the same input image are averaged. However, not all networks perform adequately for any specific patient image, even if the average network performance is good. To address this, we present a novel multi-network ensemble method that employs a selector network. The selector network evaluates the segmentation outputs from several networks; on a case-by-case basis, it selects which outputs are fused to form the final segmentation for that patient. Our candidate lung segmentation networks include U-Net, with five different encoder depths, and DeepLabv3+, with two different backbone networks (ResNet50 and ResNet18). Our selector network is a ResNet18 image classifier. We perform all training using the publicly available Shenzhen CR dataset. Performance testing is carried out with two independent publicly available CR datasets, namely, Montgomery County (MC) and Japanese Society of Radiological Technology (JSRT). Intersection-over-Union scores for the proposed approach are 13% higher than the standard averaging ensemble method on MC and 5% better on JSRT.
Inclusive pages
931-947
ISBN/ISSN
2673-2688
Document Version
Published Version
Publisher
MDPI
Volume
3
Peer Reviewed
yes
Issue
4
eCommons Citation
Silva, Manawaduge Supun De; Narayanan, Barath Narayanan; and Hardie, Russell C., "A Patient-Specific Algorithm for Lung Segmentation in Chest Radiographs" (2022). Electrical and Computer Engineering Faculty Publications. 460.
https://ecommons.udayton.edu/ece_fac_pub/460
Included in
Computer Engineering Commons, Electrical and Electronics Commons, Electromagnetics and Photonics Commons, Optics Commons, Other Electrical and Computer Engineering Commons, Systems and Communications Commons
Comments
This open-access article is provided for download in compliance with the publisher’s policy on self-archiving. To view the version of record, use the DOI: https://doi.org/10.3390/ai3040055