Document Type
Article
Publication Date
10-2021
Publication Source
Applied Sciences-BASEL
Abstract
This work proposes a facial expression recognition system for a diversified field of appli- cations. The purpose of the proposed system is to predict the type of expressions in a human face region. The implementation of the proposed method is fragmented into three components. In the first component, from the given input image, a tree-structured part model has been applied that predicts some landmark points on the input image to detect facial regions. The detected face region was normalized to its fixed size and then down-sampled to its varying sizes such that the advantages, due to the effect of multi-resolution images, can be introduced. Then, some convolutional neural network (CNN) architectures were proposed in the second component to analyze the texture patterns in the facial regions. To enhance the proposed CNN model’s performance, some advanced techniques, such data augmentation, progressive image resizing, transfer-learning, and fine-tuning of the parameters, were employed in the third component to extract more distinctive and discriminant features for the proposed facial expression recognition system. The performance of the proposed system, due to dif- ferent CNN models, is fused to achieve better performance than the existing state-of-the-art methods and for this reason, extensive experimentation has been carried out using the Karolinska-directed emotional faces (KDEF), GENKI-4k, Cohn-Kanade (CK+), and Static Facial Expressions in the Wild (SFEW) benchmark databases. The performance has been compared with some existing methods concerning these databases, which shows that the proposed facial expression recognition system outperforms other competing methods.
ISBN/ISSN
2076-3417
Document Version
Published Version
Publisher
MDPI
Volume
11
Peer Reviewed
yes
Issue
19
eCommons Citation
Hossain, Sanoar; Umer, Saiyed; Asari, Vijayan K.; and Rout, Ranjeet Kumar, "A Unified Framework of Deep Learning-Based Facial Expression Recognition System for Diversified Applications" (2021). Electrical and Computer Engineering Faculty Publications. 473.
https://ecommons.udayton.edu/ece_fac_pub/473
Included in
Computer Engineering Commons, Electrical and Electronics Commons, Electromagnetics and Photonics Commons, Optics Commons, Other Electrical and Computer Engineering Commons, Systems and Communications Commons
Comments
This open-access article is provided for download in compliance with the publisher’s policy on self-archiving. To view the version of record, use the DOI: https://doi.org/10.3390/app11199174