Partition-based Weighted Sum Filters for Image Restoration

Document Type

Article

Publication Date

5-1999

Publication Source

IEEE Transactions on Image Processing

Abstract

We develop the concept of partitioning the observation space to build a general class of filters referred to as partition-based weighted sum (PWS) filters. In the general framework, each observation vector is mapped to one of M partitions comprising the observation space, and each partition has an associatedfiltering function. We focus on partitioning the observation space utilizing vector quantization and restrict the filtering function within each partition to be linear. In this formulation, a weighted sum of the observation samples forms the estimate, where the weights are allowed to be unique within eachpartition. The partitions are selected and weights tuned by training on a representative set of data. It is shown that the proposed data adaptive processing allows for greater detail preservation when encountering nonstationarities in the data and yields superior results compared to several previously defined filters. Optimization of the PWS filters is addressed and experimental results are provided illustrating the performance of PWS filters in the restoration of images corrupted by Gaussian noise.

Inclusive pages

740-745

ISBN/ISSN

1057-7149

Comments

The paper included in the repository is the authors' accepted manuscript, provided as a full-text download in compliance with IEEE archiving policies. Permission documentation is on file.

Publisher

IEEE: Institute of Electrical and Electronics Engineers

Volume

8

Peer Reviewed

yes

Issue

5


Share

COinS