Document Type

Article

Publication Date

8-2013

Publication Source

Optics Express

Abstract

Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data.

Inclusive pages

18820-18841

ISBN/ISSN

1094-4087

Document Version

Published Version

Comments

Optics Express is an open-access journal of OSA: The Optical Society. This article is licensed with the Creative Commons Attribution License (CC-BY) and must be attributed properly. Permission documentation is on file.

Publisher

OSA: The Optical Society

Volume

21

Peer Reviewed

yes

Issue

16

Link to published version

Share

COinS