Document Type

Article

Publication Date

4-2003

Publication Source

Optical Engineering

Abstract

The design and analysis of achromatic doublet prisms for use in laser beam steering is presented. The geometric relationships describing the maximum steering angle are given, as are discussions of first- and second-order dispersion reduction. Infrared (IR) material alternatives and optimum IR material characteristics for wide-angle achromatic prism beam steering are also investigated. Sixteen materials in 120 different combinations have been examined to date. For midwave IR applications it is shown that the minimum dispersion currently achievable across the full 2 to 5 μm spectrum is 1.7816 mrad at an average maximum steering angle of 45 deg. This is accomplished using LiF/ZnS doublet prisms. Several issues related to the azimuth and elevation angles into which light is steered as a function of prism rotation angles are also presented.

Inclusive pages

1038-1047

ISBN/ISSN

0091-3286

Document Version

Published Version

Comments

Paper is made available for download in compliance with publisher policy on self-archiving and with author permission. Permission documentation is on file.

One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Publisher

Society of Photo Optical Instrumentation Engineers

Volume

42

Issue

4

Peer Reviewed

yes

Link to published version

Share

COinS