Document Type

Article

Publication Date

6-10-2016

Publication Source

Applied Optics

Abstract

3-D holographic ladar uses digital holography with frequency diversity to add the ability to resolve targets in range. A key challenge is that since individual frequency samples are not recorded simultaneously, differential phase aberrations may exist between them making it difficult to achieve range compression. We describe steps specific to this modality so that phase gradient algorithms (PGA) can be applied to 3-D holographic ladar data for phase corrections across multiple temporal frequency samples. Substantial improvement of range compression is demonstrated with a laboratory experiment where our modified PGA technique is applied. Additionally, the PGA estimator is demonstrated to be efficient for this application and the maximum entropy saturation behavior of the estimator is analytically described.

Inclusive pages

4611-4620

ISBN/ISSN

1559-128X

Document Version

Postprint

Comments

The document available for download upon expiration of the publisher's required embargo is the authors' accepted manuscript, provided in compliance with the publisher's policy on self-archiving. Permission documentation is on file. View the version of record using the DOI provided.

Publisher

Optical Society of America

Volume

55

Issue

17

Peer Reviewed

yes

Keywords

Digital holography, Remote sensing and sensors, Lidar, Optical sensingand sensors, Synthetic aperture radar, Three-dimensional image processing

Link to published version

Share

COinS