Model-assisted nondestructive evaluation for microstructure quantification

Date of Award

2015

Degree Name

M.S. in Materials Engineering

Department

Department of Chemical and Materials Engineering

Advisor/Chair

Advisor: Charles Edward Browning

Abstract

Modern computational tools are permitting realistic complex 2-dimensional (2D) and 3-dimensional (3D) geometry structures, material state properties, and multi-physics realism to be included into Computational Nondestructive Evaluation Models (CNDE), which allows a direct comparison of local material property statistics with sensing model results. The goal of this research was to develop and demonstrate ultrasound model-assisted nondestructive evaluation (NDE) methods for characterizing and mapping 2D/3D microstructures. A framework was created using the concept of Integrated Computational Materials Engineering (ICME) that allows for the incorporation of real material data sets to be described explicitly within computational NDE models. The Framework was tested using real and synthetically generated 2D/3D material data sets, where material state properties were characterized and correlated with NDE model sensing results. The implications of research are that the development of the framework is now allowing for studies to observe and understand complex elastic wave scattering due to polycrystalline microstructures.

Keywords

Nondestructive testing, Nanostructured materials Evaluation, Materials Science, Nondestructive Evaluation, Computational NDE, Integrated Computational Materials Engineering, DREAM3D, Polycrystalline, FEM

Rights Statement

Copyright © 2015, author

Share

COinS