Hypersonic experimental aero-thermal capability study through multilevel fidelity computational fluid dynamics

Date of Award

2017

Degree Name

M.S. in Aerospace Engineering

Department

Department of Mechanical and Aerospace Engineering

Advisor/Chair

Advisor: Markus P. Rumpfkeil

Abstract

As true with all hypersonic flight, the ability to quickly and accurately predict the aero-thermodynamic response of an aircraft in the early design phase is important to not only lower cost, but also to lower the computational and experimental time required to test various parameters. The Mach 6 High Reynolds Number Facility at Wright-Patterson Air Force Base in Dayton, Ohio has been non-operational for the past twenty years, but a recent resurgence in the need for accurate hypersonic test facilities has led to the reactivation of the wind tunnel. With its restoration, new capabilities to assess hypersonic aero-thermodynamic effects on bodies in Mach 6 flow have emerged. Therefore, the objective of this research is to determine if obtaining aero-thermal data from the Mach 6 tunnel using temperature sensitive paint (TSP) is a viable option. Surface pressure and temperature readings, from pressure taps and thermocouples installed on the models, as well as TSP wall temperature distributions will be used for comparison with results from computational fluid dynamics (CFD) analysis codes of differing fidelity levels. The comparisons can then be utilized to gain confidence in the ability of the tunnel to capture the aero-thermal response of complex geometries. Three computational codes were used for numerical comparisons: the Configuration Based Aerodynamics (CBAero) tool set, an inviscid panel code with viscous approximation capabilities, Cart3d coupled with Unstructured Langley Approximate Three-Dimensional Convective Heating (UNLATCH) code to approximate viscous effects from the Euler solution, and finally Fun3d, a fully viscous RANS solver. The three tunnel model geometries that will be used for this research are the Reference Flight System model G (RFSG), a Generic Hypersonic Vehicle (GHV), and the Hypersonic International Flight Research Experimentation Program-Flight 1 (HIFiRE-1) payload geometry.

Keywords

Hypersonic wind tunnels, Aerodynamics, Hypersonic, Paint Thermal properties, Aerospace Engineering, hypersonics, hypersonic experimental testing, aero-thermal, temperature sensitive paint, CFD, hypersonic CFD, tsp

Rights Statement

Copyright © 2017, author

Share

COinS