Comparative Study of Classification Methods for the Mitigation of Class Imbalance Issues in Medical Imaging Applications
Date of Award
2020
Degree Name
M.S. in Electrical Engineering
Department
Department of Electrical and Computer Engineering
Advisor/Chair
Advisor: Russell Hardie
Abstract
The rapid development and popularization of Machine Learning (ML) has paved theway to state of the art solutions in many domains, namely image-based applications suchas image classification, object detection and tracking to name a few. The medical imaging field is a bountiful source for image data with high potential for impacting the commongood. One glaring issue persists; most medical imaging datasets tend to have class imbal-ance. As a result, many ML computer aided detection (CAD) algorithms have surfaced tomitigate this issue. The focus of this work is to comparatively analyze a portion of themon multiple medical imaging datasets. Traditional Deep Learning (DL) classifiers are usedin one and two stage architectures as well as combined with Support Vector Machines. TheCIFAR10 dataset is utilized for benchmarking and determining the relationship betweenclassifier performance and class imbalance ratio. Performances vary across the datasets andalthough the two-stage architectures did not always have the highest overall accuracy, theyare warranted in specific class imbalance scenarios.
Keywords
Medical Imaging, Electrical Engineering, Computer Engineering, medical imaging, machine learning, deep learning, class imbalance, data augmentation, sampling methods, diabetic retinopathy, leukemia, CIFAR-10, CIFAR10, leukocyte, ensemble networks, neural networks, comparative study
Rights Statement
Copyright © 2020, author
Recommended Citation
Kueterman, Nathan, "Comparative Study of Classification Methods for the Mitigation of Class Imbalance Issues in Medical Imaging Applications" (2020). Graduate Theses and Dissertations. 6723.
https://ecommons.udayton.edu/graduate_theses/6723