Electrical Characterization of Memristors for Neuromorphic Computing

Date of Award

2021

Degree Name

M.S. in Electrical and Computer Engineering

Department

Department of Electrical and Computer Engineering

Advisor/Chair

Guru Subramanyam

Abstract

This thesis studied an emerging electronic device, the memristor, to gain a fundamental understanding of the switching characteristics of different device structures. Memristors with a thin film hafnium oxide (HfO2) switching layer and a phase change material (PCM), germanium telluride (GeTe), thin film switching layer are studied. This work investigated a variety of electrical characterization experiments to determine the core functionally, robustness, and neuromorphic attributes of the two different memristor devices. The electrical biasing comprised of endurance, stability, plasticity, multi-state, and synaptic plasticity characterization. The HfO2 based memristors were determined to have multiple stable resistance states when restricting the applied current at different values. These limits were 10 µA, 15 µA, 30 µA, 50 µA, and 300 µA and as the allowed current increased the lower the measured resistance would be. This study also explored transmission electron microscopy (TEM) to determine structural changes of the GeTe memristors due to electrical and thermal stimuli. The TEM results for the (PCM) showed similar structural changes near the GeTe and top electrode interface when comparing the results from both stimuli.

Keywords

Engineering, Memristor, RRAM, Neuromorphic, Oxygen vacancy, PCM

Rights Statement

Copyright © 2021, author.

Share

COinS