Title

Resistance Exercise and Growth Hormone as Countermeasures for Skeletal Muscle Atrophy in Hindlimb-suspended Rats

Document Type

Article

Publication Date

8-1-1994

Publication Source

American Journal of Physiology - Regulatory, Integrative and Comparative Physiology

Abstract

Unweighting of rat hindlimb muscles results in skeletal muscle atrophy, decreased protein synthesis, and reduced growth hormone (GH) secretion. Resistance exercise (ladder climbing) and GH treatment partially attenuate skeletal muscle atrophy in hypophysectomized hindlimb-suspended rats. It was hypothesized that a combination of multiple bouts of daily resistance exercise and GH (1 mg.kg-1.day-1) would prevent skeletal muscle atrophy in growing nonhypophysectomized hindlimb-suspended rats. Hindlimb suspension decreased the absolute (mg/pair) and relative (mg/100 g body wt) weights of the soleus, a slow-twitch plantar flexor, by 30 and 21%, respectively, and the absolute and relative weights of the gastrocnemius, a predominantly fast-twitch plantar flexor, by 20 and 11%, respectively (P < 0.05). Exercise did not increase soleus mass but attenuated loss of relative wet weight in the gastrocnemius muscles of hindlimb-suspended rats (P < 0.05). Hindlimb suspension decreased gastrocnemius myofibrillar protein content and synthesis (mg/day) by 26 and 64%, respectively (P < 0.05). The combination of exercise and GH attenuated loss of gastrocnemius myofibrillar protein content and synthesis by 70 and 23%, respectively (P < 0.05). Results of the present investigation indicate that a combination of GH and resistance exercise attenuates atrophy of unweighted fast-twitch skeletal muscles.

Inclusive pages

R365-R371

ISBN/ISSN

0363-6119

Comments

Permission documentation on file.

Publisher

American Physiological Society

Volume

267

Issue

2

Peer Reviewed

yes


Share

COinS