Document Type

Conference Paper

Publication Date


Publication Source

International Refrigeration and Air Conditioning Conference


Automatic commercial ice-making machines that produce a batch of cube ice at regular intervals are known as “cubers." Such machines are commonly used in food service, food preservation, hotel, and health service industries. The machines are typically rated for the weight of ice produced over a 24-hour period at ambient air temperatures of 90°F and water inlet temperature of 70°F.

These cubers typically utilize an air-cooled, vapor-compression cycle to freeze circulating water flowing over an evaporator grid. Once a sufficient amount ice is formed, a valve switches to enable a harvest mode, where the compressor’s discharge gas is routed into the evaporator, thereby releasing ice into a storage bin.

The U.S. Department of Energy has set a target of reducing energy usage by 10-15% by 2018. Engineering models are not publicly available to assist designers in achieving the new energy regulations. This paper presents an engineering simulation model that addresses this need. This model simulates the transient operation of a cuber ice machine based on fundamental principles and generalized correlations.

The model calculates time-varying changes in the system properties and aggregates performance results as a function of machine capacity and environmental conditions. Rapid “what if” analyses can be readily completed, enabling engineers to quickly evaluate the impact of a variety of system design options, including the size of the air-cooled heat exchanger, finned surfaces, air / water flow rate, ambient air and inlet water temperature, compressor capacity and/or efficiency for freeze and harvest cycles, refrigerants, suction/liquid line heat exchanger and thermal expansion valve properties.

Inclusive pages


Document Version

Published Version


This document is provided for download in compliance with the publisher's policy on self-archiving. Permission documentation is on file.

The paper led to a patent application by Emerson Climate Technologies. A press release about it is provided as a supplemental file.


Purdue University

Place of Publication

West Lafayette, IN