An Application of Genetic and Tabu Searches to the Freight Railroad Operating Plan Problem
Document Type
Article
Publication Date
1-1998
Publication Source
Annals of Operations Research
Abstract
This paper addresses the joint train-scheduling and demand-flow problem for a major US freight railroad. No efficient optimization techniques are known to solve the NP-hard combinatorial optimization problem. Genetic search is used to find acceptable solutions; however, its performance is found to deteriorate as the problem size grows. A "tabu-enhanced" genetic search algorithm is proposed to improve the genetic search performance. The searches are applied to test problems with known optima to gauge them for solution speed and nearness to optimality. The tabu-enhanced genetic search is found to take on average only 6% of the iterations required by genetic search, consistently achieves better approximations to the optimum and maintains its performance as the problem size grows. The tabu-enhanced search is then applied to the full-scale operating plan problem. Model results reveal a potential for 4% cost savings over the current railroad operating plan coupled with a 6% reduction in late service.
Inclusive pages
51–69
ISBN/ISSN
0254-5330
Copyright
Copyright © 1998, Springer
Publisher
Kluwer Academic Publishers
Volume
78
Peer Reviewed
yes
eCommons Citation
Gorman, Michael F., "An Application of Genetic and Tabu Searches to the Freight Railroad Operating Plan Problem" (1998). MIS/OM/DS Faculty Publications. 32.
https://ecommons.udayton.edu/mis_fac_pub/32
COinS
Comments
Permission documentation is on file.