Document Type
Dissertation
Publication Date
2009
Abstract
We investigate two topics, coarser connected topologies and non-normality points. The motivating question in the first topic is:
Question 0.0.1. When does a space have a coarser connected topology with a nice topological property? We will discuss some results when the property is Hausdorff and prove that if X is a non-compact metric space that has weight at least c, then it has a coarser connected metrizable topology. The second topic is concerned with the following question:
Question 0.0.2. When is a point y ∈ β X\X a non-normality point of β X\X? We will discuss the question in the case that X is a discrete space and then when X is a metric space without isolated points. We show that under certain set-theoretic conditions, if X is a locally compact metric space without isolated points then every y ∈ β X\X a non-normality point of β X\X.
Inclusive pages
1-51
Copyright
Copyright © 2009, Lynne Yengulalp
Publisher
University of Kansas
Place of Publication
Lawrence, KS
eCommons Citation
Yengulalp, Lynne, "Coarser Connected Topologies and Non-Normality Points" (2009). Mathematics Faculty Publications. 41.
https://ecommons.udayton.edu/mth_fac_pub/41
Comments
This document is provided for download by permission of the author. Permission documentation is on file.