Authors

Presenter(s)

Mohamed Ali Alsadig Mohamed

Files

Download

Download Project (707 KB)

Description

The goal of this research is to evaluate the benefit of actuating solar arrays for small satellites. CubeSats are small satellites that are built to standard dimensions (Units or “U”) of 10 cm x 10 cm x 10 cm. They can be 1U, 2U, 3U, or 6U in size, and weigh less than 1.33 kg (3 lbs) per U. Since their introduction in 1999 by California Polytechnic State University and Stanford University engineers, more than 1100 have been deployed into orbit. CubeSats rely solely on a solar array to generate energy from the sun. The size and weight limitations place constraints on solar panels' size and thus the available power budget and stored energy reserves, which decrease the CubeSat functions. The CubeSats capabilities could be greatly enhanced by increasing the available on-board power. This research determined the energy capturing capability from various solar panel configurations and positioning. Optimal angles of one and two degree-of-freedom positioning. Each configuration of solar cell is simulated for a CubeSats satellite in geo-synchronous and sun-synchronous orbits. In addition, this research will create design models of these various mechanisms configurations by using Sarrus linkage mechanism that elevates the solar cell away from the body of satellite to make sure that these configurations are suitable for the size and weight of the CubeSat.

Publication Date

4-22-2020

Project Designation

Independent Research

Primary Advisor

Dave Harry Myszka

Primary Advisor's Department

Mechanical and Aerospace Engineering

Keywords

Stander Symposium project, School of Engineering

United Nations Sustainable Development Goals

Affordable and Clean Energy

Optimization of Solar Array Positioning Actuators for Small Satellites

Share

COinS