Authors

Presenter(s)

Robert McCarren

Files

Download

Download Project (586 KB)

Description

The goal of this research is to develop a design strategy, and associated algorithms, that take advantage of the topology optimization package within SolidWorks to create easily producible parts. Topology optimization (TO) is a numerical procedure that accepts an initial design space, which includes loads and constraints, and produces a part optimized for structural performance. The optimization objective is commonly posed as maximizing rigidity based on a desired weight percentage, subject to maximum stress and other design constraints. One difficulty with commercial packages, such as SolidWorks, is that the final designs are generally difficult to manufacture without using additive manufacturing (AM) due to the organic nature of the TO results. AM is impractical for many applications and the TO results must be converted to a practical design using conventional manufacturing operations. A consistent method for converting the TO results into manufacturable parts does not exist. Experienced design engineers can produce considerably different practical designs from the TO results. This research focuses on automating the conversion from TO results to practical design using visual basic coding in SolidWorks. TO results will generally resemble truss-like shapes due to the strong nature of trusses. As such, the code produces a three-dimensional sketch of the truss from a Matlab visual processing of the TO result and then uses the weldment tool to create the truss geometry with tubing so the part can be more easily produced by conventional methods.

Publication Date

4-22-2020

Project Designation

Graduate Research

Primary Advisor

Andrew P. Murray, Dave Harry Myszka

Primary Advisor's Department

Mechanical and Aerospace Engineering

Keywords

Stander Symposium project, School of Engineering

United Nations Sustainable Development Goals

Industry, Innovation, and Infrastructure

Automated Design of Truss-Based Mechanical Components Using Topology Optimization

Share

COinS