Document Type
Conference Paper
Publication Date
9-2013
Publication Source
IEEE International Conference on Image Processing
Abstract
With the increasing popularity of RGB-depth (RGB-D) sensors such as the Microsoft Kinect, there have been much research on capturing and reconstructing 3D environments using a movable RGB-D sensor. The key process behind these kinds of simultaneous location and mapping (SLAM) systems is the iterative closest point or ICP algorithm, which is an iterative algorithm that can estimate the rigid movement of the camera based on the captured 3D point clouds. While ICP is a well-studied algorithm, it is problematic when it is used in scanning large planar regions such as wall surfaces in a room. The lack of depth variations on planar surfaces makes the global alignment an ill-conditioned problem. In this paper, we present a novel approach for registering 3D point clouds by combining both color and depth information. Instead of directly searching for point correspondences among 3D data, the proposed method first extracts features from the RGB images, and then back-projects the features to the 3D space to identify more reliable correspondences. These color correspondences form the initial input to the ICP procedure which then proceeds to refine the alignment. Experimental results show that our proposed approach can achieve better accuracy than existing SLAMs in reconstructing indoor environments with large planar surfaces.
Inclusive pages
275-279
ISBN/ISSN
978-1-4799-2341-0
Document Version
Postprint
Copyright
Copyright © 2013, IEEE
Publisher
IEEE
Place of Publication
Melbourne, Victoria, Australia
Peer Reviewed
yes
eCommons Citation
Su, Po-Chang; Shen, Ju; and Cheung, Sen-ching S., "A Robust RGBD Slam System for 3D Environment with Planar Surfaces" (2013). Computer Science Faculty Publications. 53.
https://ecommons.udayton.edu/cps_fac_pub/53
Included in
Databases and Information Systems Commons, Graphics and Human Computer Interfaces Commons, Information Security Commons, Numerical Analysis and Scientific Computing Commons, OS and Networks Commons, Other Computer Sciences Commons, Programming Languages and Compilers Commons, Software Engineering Commons, Systems Architecture Commons, Theory and Algorithms Commons
Comments
Document available for download is the authors' accepted manuscript, provided in compliance with publisher policy on self-archiving. Permission documentation is on file.