Document Type
Conference Paper
Publication Date
2-2015
Publication Source
Proceedings of SPIE 9408, Imaging and Multimedia Analytics in a Web and Mobile World 2015
Abstract
Automatic face recognition in real life environment is challenged by various issues such as the object motion, lighting conditions, poses and expressions. In this paper, we present the development of a system based on a refined Enhanced Local Binary Pattern (ELBP) feature set and a Support Vector Machine (SVM) classifier to perform face recognition in a real life environment. Instead of counting the number of 1's in ELBP, we use the 8-bit code of the thresholded data as per the ELBP rule, and then binarize the image with a predefined threshold value, removing the small connections on the binarized image.
The proposed system is currently trained with several people's face images obtained from video sequences captured by a surveillance camera. One test set contains the disjoint images of the trained people's faces to test the accuracy and the second test set contains the images of non-trained people's faces to test the percentage of the false positives. The recognition rate among 570 images of 9 trained faces is around 94%, and the false positive rate with 2600 images of 34 non-trained faces is around 1%. Research work is progressing for the recognition of partially occluded faces as well. An appropriate weighting strategy will be applied to the different parts of the face area to achieve a better performance.
Inclusive pages
940806-1 to 940806-13
ISBN/ISSN
0277-786X
Document Version
Published Version
Copyright
Copyright © 2015, Society of Photo-optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited.
Publisher
Society of Photo-optical Instrumentation Engineers
Place of Publication
San Francisco, CA
Volume
9408
Peer Reviewed
yes
eCommons Citation
Cui, Chen; Asari, Vijayan K.; and Braun, Andrew D., "Robust Textural Features for Real Time Face Recognition" (2015). Electrical and Computer Engineering Faculty Publications. 385.
https://ecommons.udayton.edu/ece_fac_pub/385
Comments
This document is provided for download in compliance with the publisher's policy on self-archiving. Permission documentation is on file.
DOI: http://dx.doi.org/10.1117/12.2083400