Geology Faculty Publications

Document Type

Article

Publication Date

5-2018

Publication Source

Remote Sensing

Abstract

Glacier recession driven by climate change produces glacial lakes, some of which are hazardous. Our study assesses the evolution of three of the most hazardous moraine-dammed proglacial lakes in the Nepal Himalaya—Imja, Lower Barun, and Thulagi. Imja Lake (up to 150 m deep; 78.4 x 106 m3 volume; surveyed in October 2014) and Lower Barun Lake (205 m maximum observed depth; 112.3 x 106 m3 volume; surveyed in October 2015) are much deeper than previously measured, and their readily drainable volumes are slowly growing. Their surface areas have been increasing at an accelerating pace from a few small supraglacial lakes in the 1950s/1960s to 1.33 km2 and 1.79 km2 in 2017, respectively. In contrast, the surface area (0.89 km2) and volume of Thulagi lake (76 m maximum observed depth; 36.1 x 106 m3; surveyed in October 2017) has remained almost stable for about two decades. Analyses of changes in the moraine dams of the three lakes using digital elevation models (DEMs) quantifies the degradation of the dams due to the melting of their ice cores and hence their natural lowering rates as well as the potential for glacial lake outburst floods (GLOFs). We examined the likely future evolution of lake growth and hazard processes associated with lake instability, which suggests faster growth and increased hazard potential at Lower Barun lake.

Download supplemental data

ISBN/ISSN

2072-4292

Document Version

Published Version

Comments

This work was supported by the National Aeronautics and Space Administration (NASA) High Mountain Asia grant NNX16AQ62G, SERVIR Applied Science Team grant NNX12AO96G, Interdisciplinary Research in Earth Science grant NNX17AL80G, and United Nations Development Program’s Imja Lake-Lowering project. D. Shean was supported by the NASA cryosphere program (award no. NNX16AQ88G). The authors thankWojciech Marcinek, Daniel Hicks, Adil Tahir, and Charles Howard for designing and building the sonar device (‘BathyBot’) adapted for the Thulagi bathymetry survey within the School of Mechanical Engineering at the University of Leeds, and Robert Richardson and Shaun Whitehead for their guidance on the project.

DOI: https://doi.org/10.3390/rs10050798.

Publisher

MDPI

Volume

10

Issue

5

Peer Reviewed

yes

Keywords

GLOF, glacial lake, Nepal, Himalaya, proglacial lake, moraine-dammed, glacier, remote sensing, High Mountain Asia (HMA)


Share

COinS